Gradioとは? Pythonで機械学習Webアプリケーションをサクッと作ろう!

Gradioとは

Gradio(グラディオ)とは、機械学習モデルのデモを行うWebアプリケーションを簡単に作ることができるPythonのライブラリーです。Gradioで作成したWebアプリケーションは、HuggingFaceSpacesでアプリを公開することができます。
(現時点では、Gradio以外にも、Streamlitをサポートしています。)

Gradioの公式ページより、デモアプリケーションを確認できますので、一度確認してみてください。

Gradioをインストールする

Gradioをインストールは以下のコマンドをpipコマンドでインストールするだけです。
Macですとターミナル、Windowsですとコマンドプロンプトを起動し、次のコマンドを入力し実行(Enter)してください)

pip install gradio

Gradioの使い方

基本的な使い方は、Gradioを読み込み、Interface()に関数と入力形式(画像、テキスト等)、出力形式の3つを渡しlaunch()を実行するという記述を行うだけです。
説明だけですとわかりにくいため、アプリケーションを作りながら確認していきましょう。

おみくじアプリケーションを作ろう

まずはGradioを使って今日の運勢が表示されるおみくじWebアプリケーションを作ります。
実行環境はGradioがインストールされたGoogle Colabを利用します。
以下がコード全体です。

import random
import gradio as gr

def get_foturne(your_name):
    fortune_lists = ['大吉', '吉', '小吉', '凶', '末吉']
    fortune_result = random.choice(fortune_lists)
    return your_name + "さんの今日の運勢は・・・" + fortune_result + "です"


demo = gr.Interface(fn=get_foturne,
                    inputs="text",
                    outputs="text")
demo.launch()

アプリケーションを実行すると、URLが発行されますが、Colab内にアプリケーションが表示されますので、
そこから動作の確認ができます。
名前を入力すると、運勢が表示されます。

花の種類を判定するWebアプリケーションを作ろう

先ほどは、Gradioを使っておみくじアプリケーションを作りましたが、次は機械学習を用いた花の種類を判定するアプリケーションを作ります。
今回はscikit-learnでニューラルネットワークを用いて花を判定するモデルを作成し、学習済みモデルをGradio内から読み込み動作させます。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
import joblib
from sklearn.metrics import classification_report, accuracy_score

# データ取得
iris = load_iris()
x, y = iris.data, iris.target

# 訓練データとテストデータに分割
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=0)

# solverには確率的勾配降下法(sgd)やadamなどが利用可能です。
model = MLPClassifier(solver="sgd", random_state=0, max_iter=3000)

# 学習
model.fit(x_train, y_train)
pred = model.predict(x_test)

# 学習済みモデルの保存
joblib.dump(model, "nn.pkl", compress=True)


# 精度と近藤行列の出力
print("result: ", model.score(x_test, y_test))
print(classification_report(y_test, pred))

上記のプログラムを実行すると、花の判別する学習済みモデル(nn.pkl)が作成されます。
これをGradio内で呼び出し、花の判定を行います。

from flask import Flask, render_template, request, flash
from wtforms import Form, FloatField, SubmitField, validators, ValidationError
import numpy as np
import gradio as gr
import joblib

# 学習済みモデルを読み込み利用します
def predict(parameters):
    # ニューラルネットワークのモデルを読み込み
    model = joblib.load('./nn.pkl')
    params = parameters.reshape(1, -1)
    pred = model.predict(params)
    return pred

# ラベルからIrisの名前を取得します
def getName(label):
    print(label)
    if label == 0:
        return "Iris Setosa"
    elif label == 1: 
        return "Iris Versicolor"
    elif label == 2: 
        return "Iris Virginica"
    else: 
        return "Error"

def recognition_flower(sepal_length, sepal_width, petal_length, petal_width):
    x = np.array([int(sepal_length), int(sepal_width), int(petal_length), int(petal_width)])
    pred = predict(x)
    irisName = getName(pred)
    return irisName


demo = gr.Interface(fn=recognition_flower,
                    inputs=[gr.Textbox(label="SepalLength"),
                            gr.Textbox(label="SepalWidth"),
                            gr.Textbox(label="PetalLength"),
                            gr.Textbox(label="PetalWidth")
                    ],
                    outputs="text")
demo.launch()

それぞれ4つの入力フォームに萼(がく)の長さや、花びらの長さなどを数値を入れてボタンを押すことで、花の種類が表示されます。

まとめ

短期間で、AIアプリケーションのプロトタイプを作りたい方にはGradioはオススメです。是非オリジナルのAIアプリケーションを作ってみてください。

AI AcademyのWebアプリケーション開発編では、今回学んだGradioの主要なコンポーネントの説明や、アプリの公開方法、さらには、FlaskやFastAPIなどについても解説しております。それらの内容についても学びたい方はAI Academy Bootcampの受講も検討いただけますと幸いです。

Python・AI Webアプリ開発スキルを効率よく身につけるには

もっと学びたいと思われた方にAI Academy Bootcampの公式LINEをご紹介します。友だち登録してくださった方に無料講義や無料動画のご案内受講割引クーポンのプレゼントもございます。

無料で始めるチャンスです!

AI技術は日進月歩で成長しています。AI Academy Bootcamp ではAI・データサイエンス、機械学習の実践力を高める全4コース40時間以上の動画が見放題!AIの学習に必須のPythonの学習から始まり、データサイエンス・機械学習など、目的に応じた幅広い分野をカバーしています。

無料講義や無料動画を試して頂いて、ご受講をご検討頂けましたら幸いです。